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Summary

In this report, we summarize the results from our research conducted under NASA LaRC

grant NAG-l-214I..As part of this research, we have investigated methods to build high-

level network monitoring systems on top of low-level monitoring tools. In particular, we

have used UML (Unified Modeling Language) to model several aspects of the system,

including the top-level design, the subsystem design, and the user interactions. Modeling,

using UML, was found to be extremely useful in not only expressing the high-level user

requirements but also low-level design details. In addition, we have designed and

implemented a system to evaluate the availability of different monitored systems in the

NASA LaRC environment. The system is implemented using the liP Openview software.

It monitors the up/down exception messages from the system regarding the status of

different devices, and computes the availability of different devices being monitored.

The results from our research are published in two conference papers (attached with this

report).

i. Ravi Mukkamala. Eli Siman-Tov, and Louis Galland, "An object-oriented monitoring

system for management of large networks," Proc. 1999 ASEM Conference, Oct. 21-

23, 1999, pp. 225-233.

2. Ravi Mukkamala, Eli Siman-Tov, and Louis Galland, "An object-oriented modeling

and prototyping of large-scale computer networks for performance monitoring," Proc.

World Multi-conference on Systems, Cybernetics, and Informatics, July 23-26, 2000,

pp. 302-307.



Introduction

An absoluteprerequisitefor themanagement of large computer networks is the ability to

measure their performance. Unless we monitor a system, we cannot hope to manage and

control its performance. Since most of the networks in large organizations are always

evolving with changes in available technology and the organization's own growth, these

systems are often heterogeneous in nature. In addition, several independent monitoring

systems (i.e., legacy systems) may already be in place which collect certain performance

data. However, this also poses problems. For example, the definition of a specific

measure may not be consistent among all the tools. But the users and system

administrators would like to be presented with a consistent view of the system. Another

example of a problem is the low-level measures often provided by the tools. The system

managers and users often need high-level measures. For example, when a user complains

that he/she is unable to connect to a specific machine, it is important to identify where the

bottleneck(s) is in this path. Most systems let you only check whether or not a particular

component is currently functioning. Thus, the responding service personnel need to do

several queries prior to identifying the cause.

Under this grant, we investigated methods to build high-level monitoring systems that

are built on top of existing monitoring tools. Prior to building such a system, we have

undertaken the task of modeling the current system features as well as the requirements

of the users. Due to the complexity of the system as well as the dynamically changing

requirements, we use an object-oriented approach for the modeling. First, we use UML

(Unified Modeling Language) to model users' requirements. Second, we identify the

existing capabilities of the underlying monitoring system. Third, we try to map the

former with the latter. During this mapping, we arrive at definitions (or expressions) that

may implement the user defined performance metrics in terms of the system-collected

metrics. Finally, our modeling methods should be flexible enough so that minor changes

in users' requirements do not result in major changes to the models. The models are then

prototyped using HI' Openview.

The report is organized as follows. Section 2 summarizes background information

used in our research. Section 3 describes the network configuration for which we have

developed the current system. Section 4 describes the performance model developed for

the network. Section 5 describes the prototyping efforts. Finally, Section 6 summarizes

the report



Background

In this section, we give a brief review of different concepts used in the current research

effort. We describe the UML, a modeling language, and SNMP, a standard object-

oriented protocol that is used for network performance monitoring.

Unified Modeling language (UML) -- A Modeling Tool

Unified Modeling language (UML) is a standard language for writing software blueprints

[2]. It may be used to specify different activities of a software development effort:

visualize, specify, construct, and document the activities. For example, during the first

phase of our project in which we developed the user-interface specification, we used

UML. The Use case constructs of UML helped us capture and specify the intended

behavior of the system. The use case diagrams then became a common ground for

discussion among the development team as well as with the user and system community.

In addition to the use cases, UML supports classes, relationships, packages, activities,

and interactions. The concepts are mainly expressed in terms of diagrams. For example,

the class diagram in Figure 7 models a bridge, a network infrastructure component. It

defines the two attributes of a bridge and also defines its relationships with two other

components, a network interface and an IP network device. The functions supported by

these are also shown in the diagram.

Figure 8 is an example of a use-case diagram. It shows the actors and their

interactions with the system. Within the system, the functions accessed by the actors are

denoted as ellipses. Similarly, higher level models are shown in diagrams such as Figures
1-5.

Simple Network management Protocol (SNMP)

The SNMP (Simple Network Management Protocol) model of a managed network

consists of four components: managed nodes, management stations, management

information, and a management protocol. The managed nodes can be hosts, routers,

bridges, printers, or any other devices capable of communicating their status to the

outside. An SNMP agent residing on the component achieves this communication to and

from the outside world. The network management is done from management stations.

These stations communicate with the agents to get the status information. To facilitate the

coordination between different devices and the management station, the information

maintained by the agents is standardized. In SNMP terminology, each agent maintains a

set of objects (variables). The collection of all possible objects (variables) in a network is

given in a data structure called the. MIB or Management Information Base. [4]. It also

defines a hierarchical structure for naming the variables. This type of structure has

enabled to be easily incorporated in several networking tools such as HP Openview

Let us look at the MIB variable structure in the system that we are currently

modeling. Most components maintain the system-up-time indicating the time (in units of

hundredths of a second) the component has been up since the last recovery. In the MIB-2

standards it is designated as .iso.org.dod.internet.mgmt.mib-2.system.sysUpTime.

Similarly .iso.org.dod.internet.mgmt.mib-2.udp.udpInDatagrams specifies the total

number of UDP datagrams delivered to UDP users. In addition to their textual name, each

of these variables also has a numeric ID called object ID that is unique. For example, the



numberof udpINDatagramshasanobjectID of .1.3.6.1..2.1.7.1.TheobjectIDs could be
usedin communicatingwith thenetwork managersat eachcomponent.

In additionto thestandardvariables,eachnetwork componentcould maintain
vendorspecificvariables.For example,the variable
.iso.org.dod.intemet.enterprises.hp.nm.intefface.serial.serialConfigTable.senalConfigEntr
y.
serialTimeoutis specificto Hewlett-Packard's(HP) serial interfaces.This timeout value
is usedwhenthemanagementstationhasinitiatedaconversationover theserial link and
representsthe numberof secondsof inactivity allowedbeforeterminatingtheconnection
on this serialinterface.Clearly,while thereis no homogeneityin thetime unitsacross
differentmeasures,thestandardsmakeit easierfor adeveloperto haveaprior knowledge
of themeasuresandtheir units for individual components.

From the brief description of UML and SNMP, it is clear that these tools support

object-oriented design models that we are pursuing in our current effort,

LaRCNET: The Target Network of Modeling

LaRCNET is the NASA Langley Research Center's Local Area computer network

connecting over I0,000 end-user devices together. Initially developed in 1985 to

provide local researchers with better access to Langley's Supercomputers, it has grown

from a 20-computer network spanning three buildings to its current size connecting

10,000 devices across more than 100 buildings. It is composed of three main Fiber

Distributed Data Interface(FDDI) rings: the Isolation LAN, the Direct Attached Network

and the main backbone---each running at 100 million bits per second (100 Mb/sec). The

rings interconnect through routers.
The Isolation LAN serves to connect LaRCNET to the outside world. It connects

to special purpose networks (AEROnet, EOS, NHGS, NREN, NSI, etc.) and to the world

wide Internet. A firewall between this ring and Langley's two internal nngs provides a

measure of protection from external infiltration. Connections range in speed from

1.5Mb/sec to 155Mb/sec. No user devices are connected, however. Traffic on this

network, the majority of which goes through the Internet connection, averages 2Mb/sec

with peaks at 10 Mb/sec (10% of available bandwidth).

The Direct Attached Ring connects approximately 700 high performance

computers directly to the FDDI ring via concentrators - providing 100Mb/sec to the

desktop. The second largest of the rings, it contains 65 infrastructure devices spanning 15

buildings using 20 miles of fiber. Typically, hosts are connected through a concentrator

directly to the FDDI or via Ethemet switches. Traffic averages 9% of available

bandwidth (9Mb/sec) with peaks of 60%.

The main campus backbone is the largest of the rings connecting the majority of

Langley's computers to the network at 10Mb/sec. FDDI bridges connect 31 buildings

directly to the backbone. These buildings in turn connect to 80 additional buildings.

Approximately 550 infrastructure devices (bridges, switches, hubs, and repeaters)

interconnect 220 Ethernet segments. Typically a bridge will connect from three to six

Ethemet segments containing one or more hubs. Computers attach to these hubs via

common telephone wiring. Traffic on the backbone ring averages 15% of available

bandwidth with 45% peaks (45Mb/sec) [5].



Network performance Model

In this section, we describe the network performance model that we developed for

monitoring the network.

Top-level View of the Model

Figure 1 describes a top-down view of the system model. At the highest level the system

is modeled in terms of five modules or components. This type of modularization

provides the freedom to choose different tools to implement each of the modules and to

be concerned of developing a single too[ that provides all the services. This strategy

works well when the objective is to incorporate as many of the legacy systems as possible

in the new system.

The Automated Monitoring System (AMS) is a module that is the foundation for

the system. It has several functions including establishing the events in the network that

need to be monitored, determining the criticality level of the events, receiving events

from the underlying system, and triggering alarms. The AMS will communicate with the

SNMP module in order to collect the needed data. Typically, the data is collected from

the infrastructure components such as the bridges, routers, and switches. The AMS will

communicate with the Processing System module to translate low-level device data into

higher-level network performance measurements. For example, if the AMS has been

collecting information about the system-up-time from a component, then it interacts with

the Processing System module to calculate the availability of the component. It will

interface with the File System module to query and update the Objects attributes such as

status, thresholds, and device types. The AMS will interface with the User Interface

subsystem by updating the status of a particular object and sending users alerts via an

appropriate mechanism such as dialog box pop-ups, email, or paging.

The SNMP System (SNMPS) (Figure 2) is the module that will establish the data

needed for collection from the network infrastructure devices, collect the data from the

network infrastructure hardware, and distribute the data received from the hardware to

the appropriate subsystem for processing and storage. The SNMPS will interface with

the File subsystem to determine Object attributes such as community strings, hostnames,

and device types. It will also interface with the File subsystem to save long term trending

data. It will interface with the Processing subsystem to provide low-level data needed in

the high-level network performance equations. It interfaces with the User Interface

subsystem by receiving information about the Objects that have been selected by the user.

This may include Objectff)s and MIB variable Off)s, and then returning the data gathered

from the hardware represented by the selected Objects. The SNMPS will primarily

interface with the Processing subsystem to continuously provide data to be used in the

network performance calculations.

The User Interface System (UIS) (Figure 3) is the module that will provide the

user a means to interact with the network performance system via mechanisms such as

dialog boxes, toolbars, menus, symbols and maps. Systems such as HP Openview use

symbols to represent the instantiated objects within the system and provides many

mechanisms for users to use the symbols in a variety of ways. For instance, the symbol

color can change based on the status of an object; actions such as menu items can be



enabledor disabledbasedon the attributes of the underlying object. Clicking the symbol

causes a selection that enables programs, using the software development kit. to receive

that object as a variable, which can then be used within the program. The UIS primarily

interacts with the File system. Using pre-defined files and directories, the UIS menus,

toolbars, maps, and symbols can be customized for particular network performance

monitoring requirements. The UIS interacts with the AMS, Processing, and SNMP

modules by providing the data associated with user input and receiving data associated

with user output.

The Processing System (PS) (Figure 4) is the module that will establish the

network performance attributes of interest in the LaRCNet system, provide the equations

needed for determining the performance of the network devices, and provide the

processing requested by' specific user requests. Many of the interactions with the other

modules have already been described earlier.

The File System (FS) (Figure 5) is the module that provides customization of the

user interface, definition of bitmaps and symbols, definition of object classes and the

repository of instantiated objects, and storage of long-term trending data.

Bottom-up View of the Model
In the bottom-level view of the hierarchic model, we find the class definitions for each of

the network components. For example, Figure 6 defines the network interface class

diagram.. In the network domain, the lowest element of any network device is the

Network Interface. All network devices, regardless of network topology or physical

interface type, share this common class. Each network device is assigned a unique Media

Access Control Address which is ultimately used by all protocols to identify a particular
device on the network. The next level that we define network devices on the network is

via the protocol that it is using. In Figure 6, we define three different protocol device

classes: IP, AppleTalk, and IPX. Thus, the model was able to abstract out the common

features of the network devices at the same time enabling us to represent the differences

in them. The figure shows parent-child relationships often referred in object-oriented

methodologies. For example, the IP Network Device class inherit attributes MAC

Address and the method Get_MAC_Address from the Network Interface class.

Similarly, the model for a Bridge is shown in Figure 7. The Bridge is composed

using an aggegation of one and only one IP Network device class and one or more of the

Network Interface Class per every Bridge Class. Within the various device types, a

variety of manufacturer devices are used such as DEC bridges for bridging standard

Ethernet and HP bridges for bridging AppleTalk. Even within a particular device type

and manufacturer there are various models. Some model differences can be handled by

simply having an attribute within the class to contain different values that represent the

differences. For instance, a DEC 620 bridge has three Ethernet interfaces while a DEC

900 bridge has 7 Ethernet interfaces. This difference can be represented within one class

by having a Number Of Interfaces attribute that would contain the value 3 for a 620

model and 7 for a 900 model. Some differences in models may not lend themselves to an

equivalent attribute, but have enough similarities that a parent-child class relationship can

represent them.



Modeling User Interactions

As mentioned in the introduction, our network monitoring system model not only include

the network components but also the interactions with the users. We use the use-case

dk, grams (as defined in UML) for this. The purpose of a use case is to define a piece of

behavior of an entity (e.g., system, subsystem, module, or component). Each use case

specifies a service the entity provides to its users. This is expressed in terms of the

interaction between users and entities, as well as the responses performed by the entity.

The interactions only describe the communications between the users and the entity. The

internal behavior or implementation details are hidden. Here, we describe one of the use-

cases of our system, the monitor use-case.

Monitor is an entity that monitors network status and performance. We describe

our monitor use-case in Figure 8. As shown here, the monitor has the capability to check

the availability (of system or infrastructure components), check their utilization, and

check the presence of broadcast storms (a transmission is said to be a broadcast when it is

to be delivered to multiple machines, typically all, across the network). In addition, it has

an option to locate a device within the network topology. It can also check for network

configuration errors, and trigger alerts when certain undesired conditions have occurred.

In this diagram, one can also observe other roles such as the administrator and the analyst

that interact with the monitor through the underlying system functions. Of course,

network devices and data collection files are also responsible for offenng the proposed
services to the monitor role.

High-level Monitoring Functions

In our model, we have included several high-level performance which may or may not be

supported by a commercial monitoring tool. For example, consider the availability

function defined over infrastructure components. Clearly, a tool such as the HP

OpenView system provides sysUpTime or the time since the last recovery of the

component. It also has the ability to plot the sysUpTime as a function of time. However,

the underlying system does not provide device availability which is the fraction of the

time the device under consideratio.n is available to the rest of the system. While it can be

computed from the plots, it is a tedious process for a high-level user. In addition, there

are other complications such as determining whether a device is actually down or it is

simply not accessible as one of the bridges or routers to which it is connected (directly or

indirectly) is simply down.

Similarly, whenever a device is inaccessible administrators would like to know

the cause for its inaccessibility. Im most of the existing toolkits is not possible to know

directly to which infrastructure component and to which port is the device connected in

the network. As before, while the information can be obtained through several queries, it

cannot be known directly by a user. We have provided functions through which given a

device name or its IP address, the system can provide complete information as to how it

is connected in a network, We model path availability. In addition, some exceptional

conditions such as the occurrence of broadcast storms in the system can also be detected

and reported to the users.



Prototyping the Model using HP Openview

In order to check the validity and completeness of our model, we have prototyped it using

HP OpenView (HPOV)---a system to monitor and control networking environments [l].

It provides tools for discovery and mapping of the entire network so network changes can

be instantly identified and network problems rapidly discovered. In addition, to meet the

increasing demands for dependable network performance, it also provides performance

management and reporting tools to help network administrators. The tools help managers

to proactively identify changing traffic patterns and plan for increasing network needs.

Allocating and controlling network bandwidth helps assure network service level

objectives are continually met and network simulation enable proposed network changes

to be tested before they are implemented.

The data about the occurrence of events in the system and collecting data from the

infrastructure components is done through the I--IP Openview. In other words, we have

prototyped our model on top of the HPOV. In addition, we have used its database to store

the performance measures computed by the model We found that the HPOV system

along with the HPOV software development kit Application Programming Interfaces

(APIs) would be sufficient to prototype our model representing the NASA Langley

network (LaRCNET) infrastructure system.

The HPOV database is created from a network discovery process. The process

involves queries to the various network components in the system including routers,

hubs, concentrators, bridges, and hosts that make up the whole LaRCNET system. Each

of the components is represented as an object in the object database. The "attributes" of

an object are initially determined by the object's "capabilities." Some of the capabilities

supported by the system are isBridge, isHub, isIP, siPrinter, isPC, and

isSNMPSupported. So if a device on the network was determined to have the capability

of islP=True, then that object would be assigned attributes associated with that IP

capability (e.g.,. "IP Address", "IP Hostname", "IP Netmask"). Of particular interest is

when a device is found that has the isSNMPSupported =True capability. This defines the

device as manageable and further information is acquired from the device using SNMP

queries to standard Management Information Base (MIB). When an object is

manageable, then I-_OV periodically polls its status and produces events within the

system based on the object's status. Also, when a user interacts with objects, via symbols

on maps, or the menu and toolbar systems within HPOV, additional events are triggered

and can be used for individual processing and customization. Standard network

management methods are given to us via HPOV's predefined "user interface", but this
user interface can be altered and customized to fit the needs of our OOD. These features

of HPOV will also produce an event driven aspect to the system that must be modeled

within the design.

Once HPOV has completed the discovery process, its database contains all the

"instantiated" objects within the LaRCNet infrastructure. All infrastructure type devices

support the SNMP protocol and therefor have the capability of isSNMPSupported=True.

We can now use the "SNMP sysObjectID" attribute given to each instantiated object to

help us in defining its class represented in the design. Based on this information, we can

assign additional attributes (HI:'OV database fields) to all the objects that have the same



valuc of "SNMF' sysObjectID". Using this process, we can create a set of capabilities

and/or attributes that reflect the class hierarchy of our design.

Although the objects in our database will not have "methods" attached to them as

shown in the class diagrams, there is a way to cause the same effect from within HPOV.

Customized programming within HPOV come in the form of "Actions", "Action

Callbacks", and "Event Callbacks". The Action Callbacks and Event Callbacks have the

same properties as actions. Actions are invoked by user interaction via the menus, map

symbols, and toolbars. These menus, map symbols, toolbars and even actions can be

prohibited from being available for execution based on a set of capabilities. For instance,

we could create a toolbar button or menu item that executes a "'ping" action for an object

represented by a selected symbol and then only enable those items on objects that have

the islP=True capability. Therefore, by using attributes and capabilities representing our

class hierarchy, we can enable actions based on those attributes that would then reflect

the hierarchy of methods of our design.

Due to the object-oriented nature of SNMP, UML, and HP Openview, we are able

to model and prototype the system in an incremental manner and carry out testing

Conclusion

In this report, we have summarized our current efforts to build an object-oriented

monitoring system for management of large networks. First, we have described the model

that we developed for the monitoring system. We used UML for this purpose. We then

described how the model was prototyped using HP Openview System. We have

considered the network infrastructure components at NASA LaRC to prototype our

model. Much of the model has been completed. We started prototyping several of the

modules in the model. Due to the object-oriented nature of the design methodology as

well as the prototyping system, we are able to take an incremental approach to this

problem.

References

1. HP Openview: http://www.openview.hp.com

2. Grady Booer, Ivar Jacobson, James,Rumbaugh, "The Unified Modeling Language User Guide," The
Addison-Wesley Object Technology Series, October 1998.

3. Grady Booch, "Object-Oriented Analysis and Design With Applications." Addison-Wesley Object
Technology Series, February 1994.

4. William Stallings, "Snmp, Snmpv2, and Rmon : Practical Network Management," Addison-Wesley
Publishing, July 1996.

5. David B. Yeager and Michael D. Bray. LaRCNET 1997 -- A status Report, NASA Langley Research
Center, 1997.

l0



Figure 1. Top-level Subsystem Diagram

(subsystem)

Automated Monitoring System

ubsyslem)

le System

Figure 2: SNMP System Diagram

csubsystem>
HPOV SNMP Subsystem

csubsystem)
MRTG

11



Figure 3. The User Interface System

csubsystem:,
HPOV Menus

,{subsystem:,
XNMGraph _--_(subsystem:pHPOV Dialog Boxes

l ,subsystems,
HPOV Symbols

;q

¢subsystem_
HPOV Tables

I csubsystem)
HPOV Toelbars

Figure 4. The Processing System

l ¢subsystem],
Utilization

;q

I ,subsyslem_
Throughput

_jSubsystem_

vailabiliff

l subsystem)
. Error Roles

B__I ubsystem)

dcasl Rates

L2



H__v_subsy stern_

Object Database

Figure 5. The File System

I csubsystem_,

HPOV Fields
,_subsy'_tern_,

HPOV Symbols

_Is0ubsystem_'

V Bitmaps

¢subsystem_

HPOV Confi9

subsyslem)

V Regislfation

cinherits:_

Figure 6. Network Interface Class Diagram

MAC Address

Get_MAC, Addms,sO J

,inherits_

¢inherrts:_

IP Network Device

-IP Address

-Subnet Mack

-[P Hostname

+GeL IP AddmssO

+GeL IP_HostnameO

+GeL Subnet MeskO

+SeL iP Addres,sO

+SeLSubneLMaskO

+SeL IP_HostnameO

AppleTalk Network Device

-Appletalk Address

-Zone

+Get_Appletaik_AddressO

+S et_A pp leta /k_A ddm ssO

+Get_ Z oneO

+S et_Z oneO

I

PX Network Device

-IPX Address

-Frame Type

+Get IPX Addfes.-sO

+Ge_ Frame_ TypeO

+Set IPX AddtessO

[+SeCFrame..TypeO

13



Figure 7. Bridge Infrastructure
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ABSTRACT

An absolute prerequisite for the management
of large-scale computer networks is the ability to

monitor their performance. Prior to developing a

performance monitoring system for such networks, it is

important to model the networks and test the model

using either simulation or prototypes. In this paper, we
describe our efforts to develop such a model for the

networks at NASA Langley Research Center. Keeping

in mind the complexity of the task and the required
flexibility for future changes, we use an object-oriented

design methodology. In particular, we use the Unified

Modeling language (UML) for modeling. The model is

being prototyped using the APIs offered by the UP

OpenView system.

Keywords: Computer networks, IIP Openview,

modeling, object-oriented design, performance
monitoring, prototyping, SNMP, UM2..

1. INTRODUCTION

An absolute prerequisite for the management of large

computer networks is the ability to measure their

performance. Unless we monitor a system, we cannot
hope to manage and control its performance. Since

most of the networks in large organizations are always

evolving with changes in available technology and the

organization's own growth, these systems are often
heterogeneous in nature. In addition, several "

independent monitoring systems (i.e., legacy systems)

may already be in place which collect certain

performance data. However, this also poses problems.

For example, the definition of a specific measure may
not be consistent among all the tools. But the users and

system administrators would like to be presented with a

consistent view of the system. Another example of a

problem is the low-level measures often provided by
the tools. The system managers and users often need

high-level measures. For example, when a user
complains that he/she is unable to connect to a specific

machine, it is important to identify where the

bottleneck(s) is in this path. Most systems let you only

check whether or not a particular component is
currently functioning. Thus, the responding service

personnel need to do several queries prior to

identifying the cause.

In order to solve these problems, we are investigating

methods to build high-level monitoring systems that

are built on top of existing monitoring tools. Prior to

building such a system, we have undertaken the task of
modeling the current system features as well as the

requirements of the users. Due to the complexity of the

system as well as the dynamically changing

requirements, we use an object-oriented approach for
the modeling. First, we use UML (Unified Modeling

Language) to model users' requirements. Second, we

identify the existing capabilities of the underlying
monitoring system. Third, we try to map the former

with the latter. During this mapping, we arrive at

definitions (or expressions) that may implement the
user defined performance metrics in terms of the

system-collected metrics. Finally, our modeling

methods should be flexible enough so that minor

changes in users' requirements do not result in major

changes to the models. The models are then prototyped
using UP Openview.

The paper is organized as follows. Section 2 describes
LaRCNET, the network in focus for our work. Section

3 summarizes the problem. Section 4 describes the

performance model developed for the network. Section

5 describes the prototyping efforts to evaluate the
availability measures. Finally, Section 6 summarizes

the paper.

2. LaRCNET
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LaRCNETistheNASALangleyResearchCenter's
LocalAreacomputernetworkconnectingover10.000
end-userdevicestogether. Initially developed in 1985
to provide local researchers with better access to

Langley's Supercomputers, it has grown from a 20-

computer network spanning three buildings to its
current size connecting I0,000 devices across more

than 100 buildings. It is composed of three main Fiber

Distributed Data [nterface(IVJDDI) rings: the Isolation
LAaN, the Direct Attached Network and the main

backbone---each running at I00 million bits per second

( 100 Mb/sec). The rings interconnect through routers.

The Isolation LAN serves to connect LaRCNET to the

outside world. It connects to special purpose networks
(._EROnet, EOS, NHGS, NREN. NSI. etc.) and to the

world wide Internet. A firewall between this ring and
Langley's two internal rings provides a measure of

protection from external infiltration. Connections range

in speed from 1.5Mb/sec to 155Mb/sec. No user
devices are connected, however. Traffic on this

network, the majority of which goes through the

Internet connection, averages 2Mb/sec with peaks at I0
Mb/sec (10% of available bandwidth).

The Direct Attached Ring connects approximately 700

high performance computers directly to the FDDI ring

via concentrators - providing I00Mb/sec to the

desktop. The second largest of the rings, it contains 65

infrastructure devices spanning 15 buildings using 20
miles of fiber. Typically, hosts are connected through a

concentrator directly to the FDDI or via Ethernet
switches. Traffic averages 9% of available bandwidth

(9Mb/sec) with peaks of 60%.

The main campus backbone is the largest of the rings

connecting the majority of Langley's computers to the
network at 10Mb/sec. FDDI bridges connect 31

buildings directly to the backbone. These buildings in

turn connect to 80 additional buildings. Approximately
550 infrastructure devices (bridges, switches, hubs, and

repeaters) interconnect 220 Ethernet segments.

Typically a bridge will connect from three to six

Ethernet segments containing one or more hubs.

Computers attach to these hubs via common telephone

wiring. Traffic on the backbone ring averages 15% of
available bandwidth with 45% peaks (45Mb/sec) [3].

3. PROBLEM STAEMENT

In the Langley Research Center network environment,
the method for determining availability is using a script

called netmon. This script will simply read a file

containing infrastructure devices that need to be

monitored. The script will then periodically ping each
device in the list and receive a response from the

device, indicating that the de_,qce is still working. If a
device does not respond, then an alarm is sounded on
the screen alerting personnel in the Network

Operations Center that there ,s a problem with that
device. The error would also be entered into a log file

for archiving.

There are several problems associated with using

netmon as a means of tracking availability.

1. The first problem is that it is unknown whether the
device is really down. The device could be behind

another device that is down and therefore the ping

can not traverse the network topology to get to that

particular device. The device could just be too

busy to deal with a low priority task such as a

ping. Another possibility is that the machine
doing the pinging is down or unable to reach the
network.

2. The second problem is that there is no mechanism

to determine trends in a device's availability

(although the logs were used to give us a "rough
estimate" of the device's availability). The errors

are merely logged to a file that is archived at a

periodic interval to an archive storage area. No

corrections are made regarding the first issue and

no analysis is done to extract long-term trend data.
3. The third problem is that the file used to generate

the pinging of devices must be manually edited to

add or delete any device in the network system.
4. Finally, the fourth problem is that devices are

replaced without notation in the logs, so the

hostname and 11='address contained in the file may
represent many different devices in the logs. A

separate system of trouble tickets is kept, but this

system is not correlated with logs files in anyway

that could automate the determination of which log

entries correspond with any particular device.

4. NETWORK PERFORMANCE MODEL

In this section, we describe the network performance

model that we developed for monitoring the network.

Top-level View of the Model
At the highest level the system is modeled in terms of

five modules or components. This type of

modularization provides the freedom to choose
different tools to implement each of the modules and to

be concerned of developing a single tool that provides

all the services. This strategy works well when the

objective is to incorporate as many of the legacy

systems as possible in the new system. The individual
modules are described below.
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The Automated Monitoring System (AMS) is a module
that is the foundation for the system. It has several

functions including establishing the events in the
network that need to be monitored, determining the

criticality level of the events, receiving events from the

underlying system, and triggering alarms. The AMS
will communicate with the SNMP module in order to

collect the needed data. Typically, the data is collected

from the infrastructure components such as the bridges,
routers, and switches. The AMS will communicate

with the Processing System module to translate low-
level device data into higher-level network

performance measurements. For example, if the AMS

has been collecting information about the system-up-

time from a component, then it interacts with the

Processing System module to calculate the availability
of the component. It will interface with the File

System module to query and update the Objects

attributes such as status, thresholds, and device types.
The AMS will interface with the User Interface

subsystem by updating the status of a particular object

and sending users alerts via an appropriate mechanism

such as dialog box pop-ups, email, or paging.

The SNMP System (SNMPS) is the module that will
establish the data needed for collection from the

network infrastructure devices, collect the data from

the network infrastructure hardware, and distribute the

data received from the hardware to the appropriate

subsystem for processing and storage. The SNMPS

will interface with the File subsystem to determine

Object attributes such as community strings,
hosmames, and device types. It will also interface with

the File subsystem to save long term trending data. It

will interface with the Processing subsystem to provide

low-level data needed in the high-level network
performance equations. It interfaces with the User

Interface subsystem by receiving information about the
Objects that have been selected by the user. This may

include ObjectIDs and MIB variable OIDs, and then

returning the data gathered from the hardware

represented by the selected Objects. The SNMPS will

primarily interface with the Processing subsystem to
continuously provide data to be used in the network

performance calculations.

The User Interface System (UIS) is the module that
will provide the user a means to interact with the

network performance system via mechanisms such as

dialog boxes, toolbars, menus, symbols and maps.

Systems such as ItP Openview use symbols to

represent the instantiated objects within the system and

provides many mechanisms for users to use the

symbols in a variety of ways. For instance, the symbol
color can change based on the status of an object:
actions such as menu items can be enabled or disabled

based on the attributes of the underlying object.

Clicking the symbol causes a selection that enables
programs, using the software development kit. to

receive that object as a variable, which can then be

used within the program. The UIS primarily interacts
with the File system. Using pre-defined files and

directories, the UIS menus, toolbars, maps. and

symbols can be customized for particular network
performance monitoring requirements. The UIS

interacts with the A.MS, Processing, and SNMP

modules by providing the data associated with user

input and receiving data associated with user output.

The Processing System (PS) is the module that will

establish the network performance attributes of interest

in the LaRCNet system, provide the equations needed
for determining the performance of the network

devices, and provide the processing requested by
specific user requests. Many of the interactions with

the other modules have already been described earlier.

The File System (FS) is the module that provides
customization of the user interface, definition of

bitmaps and symbols, definition of object classes and
the repository of instantiated objects, and storage of

long-term trending data.

Bottom-up View of the Model
In the bottom-level view of the hierarchic model, we
find the class definitions for each of the network

components. In the network domain, the lowest
element of any network device is the Network Interface

(Figure I). All network devices, regardless of network

topology or physical interface type, share this common

class. Each network device is assigned a unique Media
Access Control Address which is ultimately used by all

protocols to identify, a particular device on the network.
The next level that we define network devices on the

network is via the protocol that it is using. Thus. the
model was able to abstract out the common features of

the network devices at the same time enabling us to

represent the differences in them. The figure shows
parent-child relationships often referred in object-

oriented methodologies. For example, the IP Network
Device class inherit attributes MAC Address and the

method Get_MAC_Address from the Network
Interface class.

Similarly. the Bridge is composed using an aggregation
of one and only one IP Network device class and one

or more of the Network Interface Class per every

Bridge Class. Within the various device types, a variety

of manufacturer devices are used such as DEC bridges

for bridging standard Ethernet and I-if' bridges for

bridging AppleTalk. Even within a particular device
type and manufacturer there are various models. Some
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model ditfcrences can be handled by simply having an
attribute within the class to contain different values that

represent the differences. For instance, a DEC 620
bridge has .three Ether'net interfaces while a DEC 900

bridge has 7 Ethernet interfaces. This difference can be

represented within one class by having a
Number Of Interfaces attribute that would contain the
value 3 for a 620 model and 7 for a 900 model. Some

differences in models may not lend themselves to an

eqmvalent attribute, but have enough similarities that a

parent-child class relationship can represent them.

Modeling User Interactions
As mentioned in the introduction, our network

monitoring system model not only include the network

components but also the interactions with the users.

We use the use-case diagrams (as defined in UML) for

this. The purpose of a use case is to define a piece of
behavior of an entity (e.g., system, subsystem, module,

or component). Each use case specifies a service the

entity provides to its users. This is expressed in terms
of the interaction between users and entities, as well as

the responses performed by the entity. The interactions
only describe the communications between the users

and the entity. The internal behavior or impldmentation
details are hidden. Here, we describe one of the use-

cases of our system, the monitor use-case.

Monitor is an entity that monitors network status and

performance. We describe our monitor use-case in
Figure 2. As shown here, the monitor has the

capability to check the availability (of system or

infrastructure components), check their utilization, and

check the presence of broadcast storms (a transmission
is said to be a broadcast when it is to be delivered to

multiple machines, typically all, across the network). In
addition, it has an option to locate a device within the

network topology. It can also check for network
configuration errors, and trigger alerts when certain

undesired conditions have occurred. In this diagram,
one can also observe other roles such as the

administrator and the analyst that interact with the
monitor through the underlying system functions. Of
course, network devices and data collection files are

also responsible for offering the proposed services to
the monitor role.

5. PROTOTYPING AVAILABILITY

The first thing done at LaRC was to use the logs being

kept by netmon (along with its input files) to make a
"'rough estimate" of the long term trends in availability
for each Hostname/IP combination. This was used to

refine the UML design and HI:) OpenView (HI:'OV)

implementation of a final solution to address all the

probIems lacking in the current solution. Next. using

the UML deszgn, a prototype program for calculating

and presenting availability information for LaRCNet's

infrastructure devices was generated. This program

was generated within the HPOV's development
environment using the HI:'OV software development
kit. This SDK allows access to HPOV's internal

function calls including the user interface, events,
SNMP communications, and tasking structure. The

prototype deals with the problems raised above in the

following ways.

To address the first problem, the infrastructure device

itself keeps track of how long it has been in operation

since the last time it was powered up. This is a MIB-II
OID called sysUpTime. By querying this variable on a

device we can solve the problems of decided whether

the device was really down. or it was actually up but

could not be reached for a period of time by the
network management machine. Also, when a device is

tagged as "managed" within HPOV, then HPOV will

query the device on a periodic basis. By using

HPOV's event system, the prototype can detect when a

device goes up or down. Therefor. the prototype will
"listen" to I--IPOV's event system for a Device Up or
Device Down event and extract the Hostname, IP, and
Time information from the event call. If the event is a

Device Down, then the program will tag the device as

being in an Unknown state, because at this point the
device could be the victim of the situations stated in the

first problem. Once an Event for Device Up is

received for this device, then the prototype will query
the device's sysUpTime parameter and compare it to

how long the device was supposedly down. If the

sysUpTime time is _eater. then the device was never
down, otherwise the prototype will calculate the down
time and write the information to a file for later

presentation processing.

To address the second problem, a new file structure
could be created to contain all the data needed to

analyze a particular device. By storing information
about an infrastructure device's status at various

periodic intervals, trend graphs can be easily produced.

The prototype program will log all device activity into

a file. Periodically, the program will create additional
files that contain different "views" of the device, Once

the user requests availability on a device, the program

will present the availability in the following "'views";

1) Day View. showing the last 24 hour period in 5
minute resolution. 2) Weekly View, showing the last

week period using 30 minute resolution, 3) Monthly
View, show the last month with a 2 hour resolution

and, 4) Yearly View, shows the last year with a year

resolution. Finally, if the user is willing to wait for the
additional file processing time, the user may request a

particular date range _ ith a particular accuracy rating,

303



To address the third problem, information is available

from I-{POV's discovery process that will indicate
when devices are addedJmodified/deleted from the

network system. This information could be captured

and used to automatically update the list of devices that
would be tracked. The prototype program will "listen"

to the event log (the same way as when it was listening

for the devices Up/Down status) for a Device Added or

Device Deleted events. The device being deleted from

the network will not affect the program, other than to
close out an Unknown state for that device. A device

added event will cause the prototype program to add
that device to the file of machines being monitored and

begin creation of the different "views" file. Other

aspects of the program (such as the user interface) are

automatically engaged via the H]:'OV attributes that are

applied to the other infrastructure devices.

To address the fourth problem, again information is

available from HPOV's network monitoring process
that will indicate when a Hosmame/IP/MAC address

combination has changed on the network. This

information could be captured and used to indicate that
when the MAC address for an Hostname/IP has

changed, then it can be assumed to be a new device,

that needs separate metrics on its availability. This part

of the program is currently not implemented within the

prototype program. A new file would need to be
maintained to track the devices Hosmame/IP/MAC

address combination. The program could "listen" for

an event from HPOV or the pro_am would check this
file whenever a device's Up event occurred, compare it
to the current MAC address of the device, and

determine if it is the same device as when it last went

down. If the device was different, then the program
Would need to "archive" the information from the files

for historical purposes and start to maintain new data
on the new device.

6. CONCLUSION

In this paper, we have summarized our current efforts

to build an object-oriented monitoring system for

management of large networks. First, we have
described the model that we developed for the

monitoring system. We used UML for this purpose.

We then described how the model was prototyped
using lip Openview System. We have considered the

network infrastructure components at NASA LaRC to

prototype our model. Much of the model has been

completed. We started prototyping several of the
modules in the model. Due to the object-oriented

nature of the design methodology as well as the

prototyping system, we are able to take an incremental

approach to this problem.
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Abstract
An absolute prerequisite for the management of large
computer networks is the ability to measure their

performance. Unless we monitor a system, we cannot

hope to manage and control its performance. In this

paper, we describe a network monitoring system that

we are currently designing and implementing. Keeping

in mind the complexity of the task and the required
flexibility for future changes, we use an object-oriented

design methodology. The system is built using the
APIs offered by the HP OpenView I system. The

implementation work is currently in pro_ess at NASA
Langley Research Center.

Introduction

An absolute prerequisite for the management of large
computer networks is the ability to measure their

performance. Unless we monitor a system, we cannot

hope to manage and control its performance. Due to the

heterogeneous nature of networks and the monitoring
tools that are currently being used, one of the main

challenges in monitoring large distributed networks is

the choice of the measures. Some of the problems that
are faced by system administration professionals in the
network management are as follows:

• Too many measures (or indicators) in use by
different tools,

• ambiguities in the definitions of the measures,

• differences in measures supported by different
vendors, and

• compute intensive measures.

In addition, the measures provided by the existing
tools are often low-level. For example, there are

measures for the availability of a host or a bridge. But
often, system managers need higher-level measures

such as path availability (i.e., availability of a path
between a pair of hosts with certain bandwidth).

t HP OpenView is a product of Hewlett-Packard.

In order to solve these problems, we are

investigating methods to build high-level monitoring

systems that are built on top of existing monitoring
tools. Due to the heterogeneous nature of the

underlying systems at NASA Langley Research Center,

we use an object-oriented approach for the design.

First, we use U2vlL (Unified Modeling Language) to
model users' requirements. Second, we identify the

existing capabilities of the underlying monitoring
system. Third, we try to map the former with the latter.

During this mapping, we arrive at definitions (or

expressions) that may implement the user defined
performance metrics in terms of the system-collected

metrics. Finally, our design methodology should be
flexible enough so that minor changes in users'

requirements do not result in major changes to the

system.

The object-oriented approach to the network
management problems enables us to address the

heterogeneous issues of networks and the changing
user requirements in an efficient manner.

The paper is organized as follows. First, we

summarize different fundamental concepts and tools
that we use in our research. Second, we describe the

network configuration for which we have developed
the current system. Third, we describe our current

approach to object-oriented design and integrating it
with HP Openview system. Finally, we give a
summary of our efforts.

Background

Unified Modeling language (UML)
Unified Modeling language (U_IL) is a standard

language for writing software blueprints [2]. It may be
used to specify different activities of a software

development effort: visualize, specify, construct, and

document the activities. For example, during the first
phase of our project in which we developed the user-
interface specification, we used UML. The Use case

constructs of U_IL helped us capture and specify the
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intended behavior of the system. The use case diagrams

then became a common ground for discussion among
the development team as well as with the user and

system community, In addition to the use cases, UM'L
supports classes, relationships, packages, activities, and

interactions. The concepts are mainly expressed in

terms of diagrams, For example, the class diagram in
Figure 4 models a bridge, a network infrastructure

component. It defines the two attributes of a bridge and

also defines its relationships with two other

components, a network interface and an IP network

device. The functions supported by these are also

shown in the diagram.

Figure 5 is an example of a use-case diagram. It shows
the actors and their interactions with the system.

Within the system, the functions accessed by the actors

are denoted as ellipses. Similarly, higher level models

are shown in diagrams such as Figures 1-2.

HP OpenView Network Management Solution

HP OpenView (HPOV) Network Management
Solution is a standards-based solution that provides IT

organization and networks administrators the tools and

processes they need to take control of their networking
environment [ 1]. It provides tools for discovery and

mapping of the entire network so network changes can

be instantly identified and network problems rapidly
discovered, correlated, and often automatically

resolved. One of the key components of HPOV that we

build our system on is the network node management
or NNM. This component has the ability to have a

single point control of the entire network. In other

words, using NNM enables a user to monitor a network
from a single workstation. It provides a graphical

representation of the entire network. So a user simply

has to click on the right part of the map to know the
status of a node. The network map is itself built as a

hierarchical structure so the system can work for
networks with a few nodes to hundreds of nodes. Its

graphical interface enables selected performance

results to be represented graphically. The system is

based on events and it is possible to capture the
selected network events by user programs outside the

system. This is achieved through the callback interface

provided by the system. In addition to the fields
provided by the system for each object in the network,

users can add new fields. Thus, the management

system may be customized depending individual user's
needs.

Object-oriented design and development

The term object-oriented design indicates an approach
that suggests modular approach to design [3]. For

example, using bottom-up-design method, we first

specify the basic building blocks, then using these

blocks, build higher level modules, and so on. For each
such block or module, we specify the interface (or
methods) that it offers to the users of the module. In

other words, the internal details of implementation of
the methods are hidden from the users. In

implementing a module, an effort is first made to
identify needed functionality that may already be

offered by other modules. In this case, instead of

repeating the code, calls are simply made to the
existing modules. Thus, a system of network of

modules is developed.

One may wonder how such an approach is

useful in a network management environment. First,

most of the current network monitoring and
management software is based on SNMP (Simple

Network Management Protocol). This protocol is

designed with object-orientation and standards in mind
[4]. Accordingly, it defines standard or MIB

(Management Information Base) variables for each
node in the network. It also defines a hierarchical

structure for naming the variables. This type of

structure has enabled to be easily incorporated in

several networking tools such as HP Openview. The
network component (e.g., host, bridge, switch, and

hub) manufacturers also include software (also referred
to as an SNMP agent) in their hardware that support

the MIB standards. The system also provides for

manufacturer-specific variables to be supported by a

component in addition to the standard variables. As
mentioned earlier, the strict naming standards for at[

the variables enable building software to heterogeneous

component management much easier.
Let us look at the MIB variable structure in

our system. Most components maintain the system-up-

time indicating the time (in units of hundredths of a
second) the component has been up since the last reset.

In the MIB-2 standards it is designated as

.iso.org.dod.internet.mgmt.mib-2.system.sysUpTi me.
Similarly .iso.org.dod.internet,mgmt.mib-

2.udp.udpInDatagrams specifies the total number of
UDP datagrams delivered to UDP users. In addition to
their textual name, each of these variables also has a

numeric ID called object ID that is unique. For
example, the number of udplNDatagrams has an object

ID of. 1.3.6.1..2.1.7.1. The object IDs could be used in

communicating with the network managers at each

component.
In addition to the standard variables, each

network component could maintain vendor specific

variables. For example, the variable

.iso.org.dod.internet.enterprises,hp.nm.inter face.serial.s
erialConfi gTable.serialConfigEntry.serialTimeout is

specific to Hewlett-Packard's (HP) serial interfaces.

This timeout value is used when the management
station has initiated a conversation over the serial link

and represents the number of seconds of inactiv_ly
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allowed before terminating the connection on this serial

interface. Clearly. whdc there is no homogeneity in the
t,me units acruss diflcrent measures, the standards

make it eas_¢r for a developer to have a prior
knowledge of the measures and their units for

individual components.

Network Configuration

LaRCNET is the NASA Langley Research Center's

Local Area computer network connecting over 10,000

end-user devices together. Initially developed in 1985

to provide local researchers with better access to
Langley's Supercomputers, it has grown from a 20-

computer network spanning three buildings to its

current size connecting I0,000 devices across more
than 100 buildings. It is composed of three main Fiber

Distributed Data Interface(FDDl) rings: the Isolation
LAN, the Direct Attached Network and the main

Backbone---each running at 100 million bits per second
(100 Mb/sec). The rings interconnect through routers.

The Isolation LAN serves to connect

LaRCNET to the outside world. It connects to special
purpose networks (AEROnet, EOS, NHGS, NREN,
NSI, etc.) and to the world wide Internet. A firewall

between this ring and Langley's two internal rings

provides a measure of protection from external
infiltration. Connections range in speed from
1.5Mb/sec to 155Mb/sec. No user devices are

connected, however. Traffic on this network, the

majority of which goes through the Internet

connection, averages 2Mb/sec with peaks at I0 Mb/sec
(10% of available bandwidth).

The Direct Attached Ring connects

approximately 700 high performance computers

directly to the FDDI ring via concentrators - providing
100Mb/sec to the desktop. The second largest of the

rings, it contains 65 infrastructure devices spanning 15
buildings using 20 miles of fiber. Typically, hosts are

connected through a concentrator directly to the F'DDI

or via Ethernet switches. Traffic averages 9% of
available bandwidth (9Mb/sec) with peaks of 60%.

The main campus backbone is the largest of

the rings connecting the majority of Langley's

computers to the network at 10Mb/sec. Ethernet-FDDI
bridges connect 31 buildings directly to the backbone.

These buildings in turn connect to 80 additional

buildings. Approximately 550 infrastructure devices
(bridges, switches, hubs, and repeaters) interconnect

220 Ethernet segments. Typically a bridge will connect

from three to six Ethernet segments containing one or
more hubs. Computers attach to these hubs via

common telephone wiring. Traffic on the backbone

ring averages 15';_ _lavallablc bandwidth '_,_th 45%
peaks (45Mb/_,ecl [5].

Overlaying an Object-oriented Design

(OOD) onto HP Openview
When deciding how to implement new objects in our

system, we needed to choose between creating our own

database system or using the existing HPOV database

system. We found that the HPOV system along with
the HPOV software development kit Application

Programming Interfaces (APIs) would be sufficient to

implement an object structure representing the NASA

Langley network (LaRCNET) infrastructure system.
The HPOV database is created from a network

discovery process. The process involves queries to the

various network components in the system including

touters, hubs, concentrators, bridges, and hosts that
make up the whole LaRCNET system. Each of the

components is represented as an object in the object

database. The "attributes" of an object are initially
determined by the object's "capabilities". Some of the

capabilities supported by the system are isBridge,

isHub, isIP, isPrinter, isPC, and isSNMPSupported.
So if a device on the network was determined to have

the capability of isIP=True, then that object would be

assigned attributes associated with that IP capability
(e.g.,. "IP Address", "IP Hostname", "IP Netmask").

Of particular interest is when a device is found that has

the isSNMPSupported =True capability. This defines
the device as manageable and further information is

acquired from the device using SNMP queries to

standard Management Information Base (MIB) tables.
When an object is manageable, then HPOV

periodically polls its status and produces events within

the system based on the object's status. Also, when a

user interacts with objects, via symbols on maps, or the
menu and toolbar systems within HPOV, additional

events are triggered and can be used for individual
processing and customization. Standard network

management methods are given to us via HPOV's

predefined "user interface", but this user interface can
be altered and customized to fit the needs of our OOD.

These features of HPOV will also produce an event

driven aspect to the system that must be modeled
within the design.

Once HPOV has completed the discovery

process, its database contains all the "instantiated'"
objects within the LaRCNET infrastructure. All

infrastructure type devices support the SN'MP protocol
and therefore have the capability of
isSNMPSupported=True. We can now use the "SNMP

sysObjectlD" attribute given to each instantiated object

to help us in defining its class represented in the
design. Based on this information, we can assign
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additional attributes tHPOV database fields) to all the

objects that have the same value of "SNMP

sysObjectlD". Using this process, we can create a set
of capabilities and/or attributes that reflect the class

hierarchy of our design.

Although the objects in our database will not
have "methods" attached to them as shown in the class

diagrams, there is a way to cause the same effect from

within HPOV. Customized programming within
HPOV come in the form of"Actions", "Action
Callbacks". and "Event Callbacks". The Action
Callbacks and Event Callbacks have the same

properties as actions. Actions are invoked by user
interaction via the menus, map symbols, and tooIbars.

These menus, map symbols, toolbars and even actions

can be prohibited from being available for execution

based on a set of capabilities. For instance, we could
create a toolbar button or menu item that executes a

"ping" action for an object represented by a selected

symbol and then only enable those items on objects

that have the isIP=True capability. Therefore, by using
attributes and capabilities representing our class
hierarchy, we can enable actions based on those

attributes that would then reflect the hierarchy of

methods of our design.

Top-level Subsystem
The top-down view of the system shows a

hierarchy of subsystems (Figure I). This provides us
with a means of differentiating, at a high-level, the

functionality that is provided by commercial tools like

the HP Openview or third party tools that can be
integrated within the HPOV environment and the

functionality needed to be provided by code written
within the HPOV software development kit. All

subsystems provided by HP Openview or third party

tools that can be integrated within the HPOV

environment are labeled with the prefix HPOV.
The Automated Monitoring System (AMS)

is the subsystem that will establish the events in the
network that need to be monitored, determine the

criticality level of the events, receive events from the

HPOV Event subsystem, and trigger alarms. The AMS

will communicate with the SNMP subsystem in order
to collect the needed data, from the infrastructure
devices, to determine when a threshold has been met.

The AMS will communicate with the Processing

subsystem to translate low-level device data into

higher-level network performance measurements. The

AMS will interface with the File subsystem to query
and update the Objects attributes such as status,

thresholds, and device types. The AMS will also

interface with the File subsystem to trigger automated
responses using Object methods defined by the Actions

in external programs or HPOV registration files. The
AMS will interface with the User Interface subsystem

by updating the status of a particular object, sending
events to HPOV's E_ent Categories dialog box. or
sending users alerts via dialog box pop-ups or an

appropriate notification such as email or paging.

The SNMP System _SNMPS) is the
subsystem that will establish the data needed for
collection from the network infrastructure devices.

collect the data from the network infrastructure
hardware, and distribute the data received from the

hardware to the appropriate subsystem for processing
and storage. The SNMPS will interface with the File

subsystem to determine Object attributes such as

community strings, hostnames, and device types. It

will also interface with the File subsystem to save long
term trending data. It will interface with the

Processing subsystem to provide low-level data needed

in the high-level network performance equations. It
interfaces with the User Interface subsystem by

receiving information about the Objects that have been

selected by the user, such as ObjectIDs and MIB
variable OIDs, and then returning the data gathered

from the hardware represented by the selected Objects.

The SNMPS will primarily interface with the
Processing subsystem to continuously provide data to

be used in the network performance calculations.
The User Interface System (UIS) is the

subsystem that will provide the user a means to interact

with the network performance system via dialog boxes,

toolbars, menus, HPOV symbols and maps. HPOV

uses symbols to represent the instantiated objects
within the system and provides many mechanisms for

users to use the symbols in a variety of ways. For
instance, the symbol color can change based on the

status of an object; actions such as menu items can be
enabled or disabled based on the attributes of the

underlying object. Clicking the symbol causes a

selection that enables programs, using the software
development kit, to receive that object as a variable,

which can then be used within the program. The UIS

primarily interacts with the File system. Using pro-
defined files and directories, the UIS menus, toolbars,

maps, and symbols can be customized for particular

network performance monitoring requirements. The
UIS interacts with the ANIS, Processing, and SNMP

subsystems by providing data associated with User

Input and receiving data associated with User Output.

The File System (FS) is the subsystem that
provides customization of the user interface, definition

of bitmaps and symbols, definition of object classes

and the repository of instantiated objects, and storage
of long-term trending data.

The Processing System (PS) (Figure 2) is the

subsystem that will establish the network performance
attributes of interest in the LaRCNET system, provide

the equations needed for determining the performance
of the network devices, and provide the processing
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requested by,,pecific user requests. Many of the

interactiom, with the uther sub,,y,4ems have already
been described within the description of those
subsystems, thereff_re they will not be reiterated here.

The breakdown of the PS is shown in Figure

2. The Utilization subsystem is used to calculate the

utilization of various device types. This is a good

example of how to use OOD to keep a concept abstract
and not burden the user with details, because utilization

is defined in abstract terms as the percentage of the

theoretical capacity of a resource that is being used.
Utilization in a bridge may be a measurement of the

bits per second flowing through each interface since

the bridge doesn't do much work on a per packet basis,

while utilization in a router may be packets per second
since it's capacity is most limited by this. The user or

program will simply ask for the utilization of a device

and the proper measurement will be returned. The
Throughput subsystem is used for the measurement of

the time at which transmission of a packet will take to

traverse the network infrastructure. The throughput
measurement is most useful for the network

infrastructure in terms of getting long-term trending
data. The Availability subsystem determines whether a

device is currently availabte, availability for a
particular time frame, and total availability since the

device was placed on the network. The Error Rates

subsystem is used to locate devices that are jabbering
(clogging the network with bad packets), find areas of

the network that are congested, and give a breakdown

of error types. The Broadcast Rates subsystem is used

to detect broadcast storms in the network, identify the
source of the storm, and alert network administrators
when the situation reaches critical thresholds.

Bottom-up Representation of the System

The class hierarchy (Figure 3) defines the bottom-up
representation of the system. In the network domain,

the lowest element of any network device is the

Network Interface. All network devices, regardless of
network topology or physical interface type, share this

common class. Each network device is assigned a
unique Media Access Control Address (MAC) which is

ultimately used by all protocols to identify a particular

device on the network. The next level by which we
define network devices on the network is via the

protocol that it is using. In Figure 3, we define three

different protocol device classes that each inherits the
attributes and methods of the Network InterfaCe class.

This shows the building of parent-child relationships.

Network Infrastructure

The final step of defining the physical objects in our
system is to "build" the devices based on the classes

defined in our abstract class hierarchy of network

interfaces. As explained earlier. LaRCNET is

composed of inEra_tructure dcvxces or varl_)u_ t>pe_

such as bridges, hubs, routcrs, tire_,alls, concentrators.
andswitchcs. Figure4 shows the"compo_uun"ota

bridge. The Bridge Class is composed using an
aggregation of one and only one IP Network device
class and one or more of the Network Interface Class

per every Bridge Class. Within the various device
types, a variety of manufacturer devices are used such

as DEC bridges for bridging standard Ethernet and HP
bridges for bridging AppleTalk. Even within a

particular device type and manufacturer there are
various models. Some model differences can be

handled by simply having an attribute within the class

to contain different values that represent the
differences. For instance, a DEC 620 bridge has three

Ethernet interfaces while a DEC 900 bridge has six

Ethernet interfaces. This difference can be represented
within one class by having a Number Of Interfaces
attribute that would contain the value 3 for a 620 model

and 6 for a 900 model. Some differences in models

may not lend themselves to an equivalent attribute, but
have enough similarities that a parent-child class

relationship can represent them.

Use-case Diagrams

The use-case diagrams (in UNIL) describe the
interactions of the system with the user. In other words,

describe the user interface of the system. Here, we

describe one of the use-cases of our system, the
monitor use-case. Monitor is a user entity that monitors

network status and performance. We describe our

monitor use-case in Figure 5. As shown here, the
monitor has the capability to check the availability (of

system or infrastructure components), check their

utilization, and check the presence of broadcast storms
(a transmission is said to be a broadcast when it is to be

delivered to multiple machines, typically all, across the

network). In addition, it has an option to locate a

device within the network topology. It can also check
for network configuration errors, and trigger alerts
when certain undesired conditions have occurred. In

this dia_am, one can also observe other roles such as

the administrator and the analyst that interact with the
monitor through the underlying system functions. Of
course, network devices and data collection files are

also responsible for offering the proposed services to
the monitor role.

High-level Monitoring Functions

The system is designed to support several high-level

performance metrics which are otherwise not supported
by the current HP OpenView system. For example,

consider the availability function defined over
infrastructure components. Clearly, the underlying HP

OpenView system provides sysUpTime or the time
since the last recovery of the component. It also has the

229



ability to plot the sysUpFime as a function of time.

However, the underlying system does not provide

device availability which is the fraction of the time the
device under consideration is available to the rest of the

system. While it can be computed from the plots, it is
a tedious process for a high-level user. In addition,

there are other complications such as determining

whether a device is actually down or it is simply not
accessible as one of the bridges or routers to which it is

connected (directly or indirectly) is simply down.

Similarly, whenever a device is inaccessible
administrators would like to know the cause for its

inaccessibility. Currently, it is not possible to know

directly to which infrastructure component and to
which port is the device connected in the network. As

before, while the information can be obtained through

several queries, it cannot be known directly by a user.

We have provided functions through which given a
device name, MAC address, or its IP address, the

system can provide complete information as to how it
is connected in a network.

We also propose to provide some information

about path availability, throughput, utilization, error
rates, and broadcast rates.

Due to the object-oriented nature of the

underlying system (HP OpenView) as well as our

design approach, we are able to build the system
incrementally and test it.

Summary

In this paper, we have summarized our current efforts

to build an object-oriented monitoring system for

management of large networks. In particular, we have
considered the network infrastructure components at

NASA LaRC to design and implement our system. We

have used the Unified Modeling language (UML) for
high-level design of the system. The system is built on

top of HP OpenView. It implements several high-level
functions such as component availability analysis. It

also provides a good interface through which users

including analysts and network administrators can
interact and obtain system information.
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Figure 1. Top-level Subsystem Diagram
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Figure 3. Network Interface Class Diagram
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Figure 5. Monitor Use-case Diagram
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